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Abstract

Radio-frequency ablation is one of the most efficient
treatments of atrial fibrillation. The idea behind it is to
stop the propagation of ectopic beats coming from the
pulmonary vein and the abnormal conduction pathways.
Medical doctors need to use invasive catheters to localize
the position of the triggers and they have to decide where
to ablate during the intervention. ElectroCardioGraphy
Imaging (ECGI) provides the opportunity to reconstruct
the electrical potential and activation maps on the heart
surface and analyze data prior to the intervention. The
mathematical problem behind the reconstruction of heart
potential is known to be ill posed. In this study we pro-
pose to regularize the inverse problem with a statistically
reconstructed heart potential, and we test the method on
synthetically data produced using an ECG simulator.

1. Introduction
Different methods based on Tikhonov regularization [1]

have been used in order to regularize the inverse problem
in electrocardiography imaging, but still the reconstructed
electrical potential is not sufficiently satisfactory. Previous
work [2] presented a machine learning technique based on
a Reproducing Kernel Hilbert Space (RKHS). This method
allows a good capturing of the activation times but it has
been reported in [2] that the value of the reconstructed
electrical potentials is not sufficiently accurate in terms
of amplitude. In this work we use the machine learning
solution as a regularization term in the least square clas-
sic formulation of the inverse problem and we show how
it improves the reconstruction. We propose to compare
different formulations of the inverse problem: a) Least
square with Tikhonov regularization, b) Statistical RKHS,
c) Least square regularized with the statistical RKHS solu-
tion, d) Least square regularized with the nearest solution
in a data base.

In order to assess and compare these methods, we need
first to create synthetic data on which will test these differ-

ent approaches. In paragraph 2.1, we present the forward
problem used to simulate potential in the atria surface and
in the torso. We simulate a data base following different
stimulation position on the atria. This data base will be
used in paragraph 2.2 to train the statistical model for the
methods b) and c) and to choose the nearest solution in
method d).

2. Methods
In this section we present the models used to simulate

the forward problem and the methods used to solve the in-
verse problem. In addition, to solve the inverse problem
we need data of electrical potential on the body surface.
These data are constructed using 3D mathematical mod-
els simulating the electrical activity in the heart and in the
torso.

2.1. Forward problem
The bidomain equations were used to simulate the elec-

trical activity of the heart and extracellular potentials in the
whole body (see e.g. [3–5]). These equations in the heart
domain ΩH are given by:

Am

(
CmV̇m + Iion(Vm,w)

)
− div

(
σi∇Vm

)
= div

(
σi∇ue

)
+ Istim,

−div
(
(σi + σe)∇ue

)
= div(σi∇Vm),

ẇ + g(Vm,w) = 0,

σi∇Vm · n = −σi∇ue · n on Σ.

(1)

The state variables Vm and ue stand for the transmembrane
and the extra-cellular potentials. Constants Am and Cm

represent the rate of membrane surface per unit of volume
and the membrane capacitance, respectively. Istim and Iion
are the stimulation and the transmembrane ionic currents.
The heart-torso interface is denoted by Σ. The intra- and
extracellular (anisotropic) conductivity tensors, σi and σe,
are given by σi,e = σt

i,eI+(σl
i,e−σt

i,e)a⊗a, where a is a
unit vector parallel to the local fiber direction and σl

i,e and

ISSN 2325-8861 Computing in Cardiology 2013; 40:1135-1138.1135



σt
i,e are, respectively, the longitudinal and transverse con-

ductivities of the intra- and extra-cellular media. The field
of variables w is a vector containing different chemical
concentrations and various gate variables. Its time deriva-
tive is given by the vector of functions g.

The precise definition of g and Iion depend on the elec-
trophysiologic transmembrane ionic model. In the present
work we make use of one of the biophysically detailed hu-
man ventricular myocyte model [6]. The ion channels and
transporters have been modeled on the basis of the most re-
cent experimental data from human ventricular myocytes.

Figure 1 provides a geometrical representation of the do-
mains considered to compute extracellular potentials in the
human body. In the torso domain ΩT, the electrical poten-
tial uT is described by the Laplace equation.

div(σT∇uT) = 0, in ΩT, (2)

where σT stands for the torso conductivity tensor. For the
boundary condition, we suppose that The torso is isolated
so in the external boundary we have:

σT∇uT · nT = 0, on Γext, (3)

where nT is the outward unit normal to the torso exter-
nal boundary Γext. On the internal boundary which is the
heart torso interface, we suppose that we have continuity
of electrical potential

ue = uT, on Σ. (4)

From (2)-(3)-(4) we obtain the well posed model in the
torso 

div(σT∇uT) = 0, in ΩT,

σT∇uT · nT = 0, on Γext,

ue = uT, on Σ.

(5)

We use finite element method in order to solve equa-
tions (1) and (5), a space discretisation of the heart and
torso domains is then needed. Since we are interested in
targeting ectopic beats in the atria, we only consider the
electrical activation in the atria. The finite element geom-
etry of atria is given in Figure 2.1 (left). it was embedded
in a torso geometry given in Figure 2.1 (right) [7].

2.2. Inverse problem

In this section we present the different methods used to
solve the inverse problem. The RKHS method has been
purely used to reconstruct statistical solution of the inverse
problem see [2] from a set of precomputed EGMs and body
surface potentials (BSPs). It has been also reported in [8]
that RKHS method could be successfully used to recon-
struct BSPs from EGMs provided that a sufficiently rich
data set is given. There two important phases in the RKHS

Figure 1. Finite element computational domains: Atria
geometry with the different locations of stimulus used to
construct the training data set (lfet). Torso geometry with
different BSP measurements locations (right).

method, the first is the learning phase and the second is the
reconstruction phase. For the sake of simplicity we briefly
recall these two phases, we refer to [2] for readers inter-
ested in more details. In the learning phase we need a data
set consisting of couples of BSPs and EGMs. Let’s denote
this data set by (BSPi, EGMi)i=1...n .

The main goal is to build a function f able to accurately
map a BSP to an EGM. We use a kernel ridge regression
method based on the Gaussian kernel

K(x,y) = e
−
|x− y|2

2σ2 , ∀x,y ∈ R m×p.

We look for f in a RKHS (H, 〈·, ·〉H) characterized by the
following property,

∀f ∈ H, ∀x ∈ Rm×p, f(x) = 〈f(·),K(·,x)〉H.
(6)

where 〈·, ·〉H is the inner product in H. For given bsp the
statistical EGM is computed as follows

˜egm = f(bsp) :=

n∑
i=1

αiK(bsp,BSPi). (7)

Details about how to find (αi)i=1...n could be found in [2].
The inverse problem in electrocardiography is widely for-
mulated using the least square approach a) minimizing the
flowing objective function :

J(U(t)) =‖M ∗ U(t)− bsp(t) ‖l2 +λ ‖ U(t) ‖l2 , (8)

where M is the transfer matrix computed using finite ele-
ment method as in [9] (section 5.5.1) and λ is the Tikhonov
regularization parameter. We propose to compare the so-
lution of this formulation to the RKHS solution given by
equation (7) method b). We also propose to compare it
with following formulation c)

J(U(t)) =‖M ∗ U(t)− bsp(t) ‖l2
+λ ‖ U(t)− f(bsp)(t) ‖l2 ,

(9)
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This means that we regularize with the statistical solution
computed using the RKHS approach. In the last method
d) we propose to compare with is a regularization with the
nearest EGM in the data base.

J(U(t)) =‖M ∗ U(t)− bsp(t) ‖l2
+λ ‖ U(t)− EGMj(t) ‖l2 ,

(10)

where the index j

j = min
i∈{1,...,n}

‖ BSPi − bsp ‖l2 .

This would allow us to assess whether or not it is worth re-
constructing a statistical solution and plug it into the reg-
ularization term, or is it enough to take the EGM corre-
sponding to closest BSP in the data base and regularize
with, instead of statistically reconstructed.

3. Results
In this section we present simulations of the inverse

problems for the methods we presented in the previous
paragraph. In order to construct the statistical solution that
is used in methods b) and c) and the nearest solution in
method d), we built 400 cases of heart beats each one cor-
responds to a different stimulation position. This data base
is used to train the statistical model, we then obtain a meta-
model (the function f ). We simulated a heart beat which
does not belong to the training data set, we extracted the
body surface potential from the forward solution and aim
to recover the electrical potential on the atria using each of
the four methods that we presented. We extract the time
course of the potential in two points in the atria and com-
pare the different methods.

In Figure 2, we show a comparison of the time course of
the electrical potential in the node number 100 of the atria.
The red (and continuous) line stands for the exact solution
which was computed from the forward solution. The pur-
ple (and dotted) line stands for the method a) least square
with zero Tikhonov regularization. The green line (and
dashed) is the RKHS solution, the blue line (and dotted)
is the least square regularized with RKHS solution and the
cyan line (dashed and dotted) stands for the least square
regularized with the nearest solution in the data base. First
we can see the method c) improves the solution given by
the method b) in terms of amplitude. The solution given
by method d) is shifted and does not have the same ampli-
tude as the exact solution. The shifting is more pronounced
and achieves more than 20ms in Figure 3 (where the time
course of the potential is extracted from node 200), this
would highly affect the activation time reconstruction.
We also remark that the obtained potential with the stan-
dard Tikhonov regularization (method a) smooths the in-
verse solution too much, and it is very clear in figure 3,
this also may significantly affect the activation map since
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Figure 2. Electrical potential at node 100 (see text).
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Figure 3. Electrical potential at node 100 (see text).

the maximum time derivative could be highly altered. In
Figure 4 we show the activation time maps obtained using
the different methods. We compute the activation times
following maximum time derivative at each node of the
mesh. The exact activation map (top, left image in Figure
4) is obtained from the forward problem solution. Both
of activation maps computed from method b (respectively
c) solutions are accurate, both of them localized the ec-
topic stimuli. Activation times obtained by method d) are
far from the exact solution, this explains the time shifting
in the electrical potential depolarization (Figures 2 and 3).
The activation map computed using method a) is highly al-
tered compared to the exact solution its values reach 179
ms while the last depolarized cell in the exact solution is at
142 ms. This means that as some places the error could be
more than 37 ms.

4. Discussion
In this work we showed that the machine learning tech-

nique is a good approach to regularize the inverse problem
in electrocardiography. The inverse solution solution was
improved when we plugged it into the regularization term
of the least square problem the statistical solution obtained
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using the regression approach (RKHS). We noticed that
regularizing with the nearest solution in the data base is
not a good approach. The least square with zero Tikhonov
regularization (method a) smooths the inverse solution too
much, since it constrains the solution to be as much as
possible close to zero even in the height variation condi-
tion like in depolarization phase. We have to notice here
that the accuracy of the statistical solution depends on the
training data set. Nevertheless, even if the statistical solu-
tion is not too much accurate, we think that plugging this
solution into the regularization term would be better than
zero Tikhonov regularization that constrains the solution
to be close to zero.

Figure 4. Comparison of the activation times (from
left to right and from top to bottom): exact activation
times and activation times reconstructed with RKHS meta-
model (method b), activation times reconstructed with
least square regularized with RKHS solution (method c),
activation map reconstructed with Least square with stan-
dard Tikhonov regularization (method a) and activation
map reconstructed with Least square with nearest ECG
regularization.

5. Conclusion

In this work presented a new regularization of the in-
verse problem in electrocardiography based on a machine
learning technique. We use the reproducing kernel Hilbert

space regression approach to construct a statistical solu-
tion of the inverse problem, we then use this solution to
regularize the least square formulation of the inverse prob-
lem. Numerical results show that this approach improves
the quality of the inverse solution and that among the four
methods presented in this paper it gives the best construc-
tion of electrical potential in the atria. The different meth-
ods have been tested on synthetic data. We used a 3D ECG
simulator based on a 3D multiscale mathematical model in
order to create this data. Future works will assess the accu-
racy of this method with clinical data, the ECG simulator
could be used in this case in order to enrich the clinical
data.
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