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Abstract—Arrhythmia classification remains a major challenge
for appropriate therapy delivery in implantable cardioverter de-
fibrillators (ICDs). The purpose of this paper is to present a new
algorithm for arrhythmia discrimination based on a statistical clas-
sification by support vector machines of a novel 2-D representation
of electrograms (EGMs) named spatial projection of tachycardia
(SPOT) EGMs. SPOT-based discrimination algorithm provided
sensitivity and specificity of 98.8% and 91.3%, respectively, on a
test database. A simplified version of the algorithm is also pre-
sented, which can be directly implemented in the ICD.

Index Terms—Arrhythmias, electrogram (EGM) morphology,
implantable cardioverter defibrillators (ICDs), inappropriate ther-
apy, spatial projection of tachycardia (SPOT), support vector ma-
chines (SVMs).

I. INTRODUCTION

UNLIKE supraventricular tachycardia (SVT), ventricular
tachycardia (VT) is a life-threatening tachyarrhythmia that

may lead to sudden death unless an appropriate shock is deliv-
ered. It aims at resynchronizing cardiac cells to restore a normal
rhythm. Unfortunately, inappropriate shocks are very painful
and stressful for patients, and can also trigger a life-threatening
tachyarrhythmia. Therefore, discrimination of VT from SVT
is a major challenge for appropriate therapy delivery in im-
plantable cardioverter defibrillators (ICDs). In a dual-chamber
device, two leads are implanted, one in the right atrium and one
in the right ventricle, with a decision based on both signals. For
primary prevention, however, a single-chamber device is usually
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Fig. 1. Simplest ICD system: a single-chamber ICD with a single-coil inte-
grated bipolar lead. The distal electrode (tip) has a small area and is located
in the apex (or the septum) of the right ventricle (RV). The proximal electrode
(coil) is an elongated electrode located in the RV, close to the tip; this electrode
delivers the electrical shock if necessary, together with the can as the reference:
the latter is generally implanted in left subclavicular position.

preferred. In such devices, a single lead is implanted in the right
ventricle and arrhythmia discrimination is based on information
pertaining solely to the ventricles.

The Madit II study [1] was the first to document the life-
saving benefits of single- and dual-chamber ICDs in a primary
prevention population with long-term data. The results of the
study showed that inappropriate shocks occurred commonly:
11.5% of the 719 ICD patients were shocked inappropriately,
and the number of inappropriate shocks represented 31.2% of
the total number of shock episodes. Besides the pain and stress
inflicted by inappropriate shocks to the patient, Madit II also
showed that they were associated with increased risk of all-cause
mortality. There is thus clearly a need for further improvements
in arrhythmia discrimination.

The discrimination in ICDs is performed from endocardial
measurements of the electrical activity of the heart between
electrodes called electrograms (EGMs) (see Fig. 1). Histor-
ically, only time intervals extracted from EGMs were used
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for diagnosis. In the last decade, however, when ICDs began
to be equipped with sufficient computing power, an analysis
of the shape of a single EGM channel was added, resulting
in improved performances [2]–[4]. Nevertheless, no consen-
sus has emerged on the choice of the most appropriate chan-
nel for best performance. Boriani et al. [5], for example, per-
formed their morphology algorithm on bipolar intraventricular
EGMs (RVcoil-RVtip). Conversely, Luthje et al. [6] and Wolber
et al. [7] showed that RVcoil-can EGM appears to be superior
to other EGM sources. Finally, Gold et al. [3] used a “dual-
coil lead,” a special lead with an additional defibrillation coil,
in order to provide a more global view of electrical conduc-
tion throughout the heart. In this paper, we propose to perform
a morphological analysis from both far-field (RVcoil-can) and
near-field (RVcoil-RVtip) EGMs recorded using any standard
lead. The main contribution of this paper is the description of
these two EGMs in an appropriate 2-D space in which the dis-
crimination of the arrhythmia can be efficiently performed.

This new representation, termed spatial projection of tachy-
cardia (SPOT), together with the mathematical features for its
description, are presented in Section II. Section III provides an
overview of the discrimination algorithm based on SPOT rep-
resentation and introduces the statistical classifier developed in
this study. Section IV presents the performances of the proposed
method, while complexity considerations for hardware imple-
mentation are discussed in Section V. Section VI concludes the
paper.

II. SPATIAL PROJECTION OF TACHYCARDIA

A. Physiological Basis and EGM Signals

It is known from physiological knowledge on cardiac arrhyth-
mia that electrical propagation on the cardiac muscle pertaining
to both normal heartbeats and SVT originates in the atria. Con-
sequently, the conduction pathways followed in the ventricles
are also the same. Conversely, the VT electrical signal, which
originates in the ventricles themselves, uses a different pathway.
This property results in morphological differences between nor-
mal and VT beat EGMs, while normal and SVT beat EGMs are
rather similar.

Consequently, the proposed SVT versus VT discrimination
method relies essentially on the differences in shape between
arrhythmic EGM signals and normal beat signals. In addition,
when analyzing a body surface ECG, it is commonly accepted
that a single ECG channel is not enough to precisely understand
the underlying activity of the heart. Indeed, an ECG is a 1-D
projection of the electrical activity along the direction spanned
by the electrodes, and 2, 3, or 12 leads are usually preferred.
This property can be generalized to EGM signals. Thus, the
study aims at simultaneously analyzing two EGMs, which are
available at the same time: the far-field and the near-field signals.

B. SPOT Curve Representation

The two EGM channels that record the ventricular depolariza-
tion are plotted in a 2-D space in which the x-axis is the voltage
amplitude of the far-field signal and the y-axis the voltage am-

Fig. 2. Three SPOT curves for a single patient. For illustration, EGMs are
sampled at 500 Hz.

plitude of the near-field signal in the spirit of vectocardiograms
used in the analysis of surface ECGs. Thus, this plot provides
a compact representation of two different physical signals, car-
rying different information; this is a sharp contradistinction to
state-space plots that represent the time evolution of a single
signal [8]. In our representation, called SPOT, a cardiac cycle is
represented by a loop, with time as a parameter. Fig. 2 shows
three SPOT curves for the same patient, one during a normal
sinus rhythm (NSR), one during a VT, and one during an SVT.
As expected, the SVT SPOT curve is similar to the NSR SPOT
curve up to a scale factor that will be discussed in the following,
while the VT SPOT curve is very different in both direction and
shape.

C. Description of a Single SPOT Curve

As we wish to make comparisons among SPOT curves, rel-
evant numerical descriptors are required for these curves. The
choice of these has been driven by physiological observations
and statistical feature selection, and results in the selection of
the velocity vector as a good quantitative value [9].

Let b(t) be the amplitude of the bipolar near-field signal,
and u(t) the amplitude of the unipolar far-field signal at time t.
Velocity vectors are computed as the time derivatives of each
EGM channel. We denote by u′(t) and b′ (t) the time derivatives
of u(t) and b(t), respectively, by V(t) = (b′ (t), u′ (t)) the velocity
vector at time t, and by N(t) the Euclidean norm of V(t).

D. Comparison Between Two SPOT Curves

Three elements of prior physiological knowledge served as
guidelines in the selection of relevant features for the discrimi-
nation between SPOT curves.

First, the electrodes are essentially motionless inside the heart.
In other words, electrical activities along similar conduction
pathways should result in consistently similar directions of the
velocity vectors along the SPOT curves (this property will be
called “directional consistency”).
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TABLE I
FEATURE COMPUTATION

Second, the velocity of the depolarization wave should vary
in the same way for NSR and SVT SPOT curves (this property
will be called “velocity consistency”).

Finally, the amplitude of the signals may vary; thus, two
homothetic SPOT curves should not be considered as different:
the selected features should comply with this constraint.

In order to evaluate directional consistency quantitatively,
the candidate feature is the average value 〈θ〉 of the angles
between relative velocity vectors V(t) from the two SPOTs to
be compared. Let θ(t) be this angle at time t

cos (θ(t)) =
V1(t) · V2(t)
N1(t)N2(t)

=
b′1(t)b′2(t) + u′

1(t)u′
2(t)

N1(t)N2(t)
(1)

where V1(t) and V2(t) are the velocity vectors at time t asso-
ciated to the two SPOTs to be compared, and N1(t) and N2(t)
their norms.

In practice, t is a discrete variable since the signals are sam-
pled. Therefore, the average angle 〈θ〉 is estimated as follows:

〈θ〉 =
1
n

n∑

t=1

θ(t) (2)

where n is the number of time samples in the observed cardiac
cycle.

The second feature characterizes the similarity among the
curves in terms of norms of the velocity vectors and is defined
as follows:

C =
∑n

t=1
(
N1(t) − N̄1

) (
N2(t) − N̄2

)
√∑n

t=1
(
N1(t) − N̄1

)2
√∑n

t=1
(
N2(t) − N̄2

)2
(3)

where N̄1 and N̄2 are the mean values of N1 and N2 , respec-
tively.

Two SPOT curves that are homothetic, i.e., that are such that
N1(t) = λ N2(t) ∀t, result in a value of C equal to 1.

To illustrate this, Table I gives the values of these two features
resulting from the comparison between the arrhythmia SPOT
curves of Fig. 2 and the NSR template.

III. VT/SVT DISCRIMINATION BASED ON SPOT COMPARISONS

A. Overview of the Algorithm

As mentioned earlier, the method aims at comparing an ar-
rhythmia beat with an NSR beat used as a reference (see Fig. 3).
This reference template is obtained by averaging several con-
secutive normal beats during a slow heart rate episode in order
to filter out beat-to-beat variations.

An arrhythmia is detected when the heart rate is above a
predetermined threshold, typically higher than 100 beats per
minute (BPM). In this case, morphological analysis is performed

Fig. 3. Overview of the discrimination algorithm.

by computing the velocity vectors of the arrhythmia SPOT, and
the morphological features 〈θ〉 and C between the arrhythmia
SPOT and the reference template are estimated.

In addition to 〈θ〉 and C, two usual rhythmological features
are taken into account: the mean value of RR intervals of the
arrhythmia 〈R〉 and the associated standard deviation σR . Ac-
tually, as illustrated by previous clinical trials ([4] and [10]),
morphology algorithms perform better when combined with
rhythm discriminators.

B. Support Vector Machines

The decision whether the arrhythmia is a VT or an SVT is
then performed in the 4-D space spanned by 〈θ〉, C, 〈R〉, and
σR . For a given beat B, the first two features pertain to the (B,
NSR template) pair, and the last two to the arrhythmia episode
containing B. The statistical classifier used at this point is a sup-
port vector machine (SVM) [11]; its purpose is to divide the 4-D
space into two areas pertaining to VTs and SVTs, respectively.

A linear SVM classifier provides the optimal separating hy-
perplane in feature space, i.e., the separating hyperplane that
classifies all examples without error, while at the same time,
lying as far as possible from the closest examples. The distance
between the separating hyperplane and the examples closest to
it is called the geometrical margin of the classifier; the examples
that lie at a distance from the separating hyperplane equal to the
geometrical margin are called the support vectors. Denoting by
X the feature vector that describes the items to be classified (in
our case, arrhythmia beats), and by W the vector of parameters
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of the model, the equation of the hyperplane is of the form

W · X + b = 0 (4)

where b is an additional parameter.
In our case, the components of the vector X describing a beat

are the aforementioned four features 〈θ〉, C, 〈R〉, and σR .
Training is the procedure whereby the values of W and b are

estimated from the examples, i.e., from a data set (“training set”)
containing heartbeat recordings that were labeled by experts
with label +1 for VT beats and −1 for SVT beats. Training is
cast in the form of a constrained optimization problem, where the
function to be minimized is the norm of the vector of parameters
W under the constraint that all examples be correctly classified
(“hard-margin” SVMs).

The central problem in machine learning is the ability of the
trained models to generalize, i.e., to correctly classify examples
that are not present in the training set. The fact that the mag-
nitude of the vector of parameters is kept as small as possible
minimizes the risk of poor generalization. However, allowing
some examples of the training set to be misclassified may fur-
ther improve the generalization ability of the model. This leads
to “soft-margin SVMs,” where the function to be minimized
contains, in addition to the norm of vector W, a term that is
roughly proportional to the number of misclassified examples,
with a proportionality coefficient γ (termed the “regularization
constant”), which must be determined in designing the model.

In this study, however, a more complex, nonlinear classifier
is required. To this end, we apply the so-called “kernel trick”
which maps the original observations (which are not linearly
separable) onto a higher-dimensional space, where they are lin-
early separable, and a linear classifier can be used; this makes
a linear classification in the new space equivalent to nonlinear
classification in the original space (provided the kernel and its
hyperparameters are chosen appropriately, as described in the
next section). As a result, the built-in regularization mechanism
inherent to linear SVMs, leading to the estimation of the param-
eters of the optimal separating hyperplane, is retained, while
optimal nonlinear separating surfaces are estimated.

We use here a standard Gaussian radial basis kernel. In this
case, the discriminant function obtained after training is given
by

E(X) =
l∑

i=1

αi exp

(
−‖X − Xi‖2

2σ2

)
+ b (5)

where l is the number of support vectors, Xi is the feature
vector describing support vector i, X is the feature vector of
a heartbeat to be classified, αi and b are parameters estimated
during training, and σ is a “hyperparameter” chosen during
model selection, as described in the next section.

If the decision threshold is set to 0, the equation of the separat-
ing surface is E(X) = 0; a heartbeat described by X is classified
as a VT beat if E(X) > 0, otherwise it is classified as an SVT
beat.

TABLE II
DATABASES USED FOR CLASSIFIER TRAINING AND TESTING

C. Model Selection

The effectiveness of SVM classification is contingent on the
proper selection of the kernel hyperparameter σ and the soft
margin hyperparameter γ (which controls the tradeoff between
errors of the SVM on training data and margin maximization).
In this study, model selection was performed using leave-one-
out (LOO) cross validation [12], i.e., each of the N examples
of the training set was used as a validation example, which was
classified by a classifier trained on the other N − 1 examples.
Thus, N classifiers with the same values of σ and γ were trained,
each of which classified the example that was left out during its
training. For a given {σ, γ} pair, the numbers of true negatives,
true positives, false negatives, and false positives among the
left-out examples were then computed so that the sensitivity
and specificity pertaining to the {σ, γ} pair could be derived.
Finally, the LOO score S pertaining to the {σ, γ} pair was
defined as a weighted sum of the sensitivity and the specificity
of the classifier

S = ρ × sensitivity + specificity. (6)

The weight ρ defines a tradeoff between these two values. Here,
we chose ρ = 2 in order to emphasize sensitivity: a misclassified
SVT (false positive) is less risky than a misclassified VT (false
negative), which could lead to a patient’s death.

The procedure was iterated for different values of σ and γ in
a prescribed range: σ ∈ [0.1; 4] and γ ∈ [0.05; 100], and the
pair of values that yielded the highest value of S was retained.

As S is a discrete variable, several models were selected.
Thus, an additional criterion was implemented: for each pair
of σ and γ, for which we obtained the maximum LOO score,
an SVM classifier was trained with the total amount of training
data, then the decision threshold was varied in order to draw
the receiver operating characteristic curve [13]. The classifier’s
parameters are set to the values (σ, γ) for which the area under
the curve (AUC) is largest.

IV. TRAINING AND TEST DATABASES

EGMs from three different databases were used in this study
to train and test the classifiers (see Table II).

A. Sorin CRM Private Database for Classifier Training

The first dataset is private, supplied by Sorin CRM. It is
composed of induced arrhythmias during an electrophysiology
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procedure. This database features 29 VTs and 19 SVTs from
32 patients (56 ± 19 years, 84% men, 44% ischemic heart
disease). In order to match the clinical database presented in
the following, the records were downsampled to 125 Hz. Since
this database is not publicly available, it was used to train the
classifier.

B. Standard Database for Classifier Testing

Two different test sets were used: the first one consists of
volumes I and II of the standard Ann Arbor Electrogram Li-
braries [14], which include 154 VTs and 14 SVTs from 81
patients (62 ± 13 years, 83% men, 43% coronary artery dis-
ease). This is the only available database that contains both
far-field and near-field EGMs. Unfortunately, most arrhythmias
are induced, whereas spontaneous episodes would be preferable
since they correspond to the events the algorithm will have to
process. The records were also downsampled to 125 Hz.

C. Clinical Database for Classifier Testing

The second database overcomes the previous drawback since
it was recorded directly in ICDs. A data-acquisition procedure
is underway within a clinical study including patients implanted
with a Paradym dual-chamber ICD (Sorin CRM). The device is
programmed after implantation to record the two EGMs needed
to construct the SPOT curves during arrhythmia episodes. At
the time of writing this paper, 24 patients were involved in 11
centers in Europe. To date, 10 patients contributed for a total of
7 VTs and 78 SVTs.

V. ASSESSMENT PROCEDURE AND RESULTS

The efficiency of the proposed methodology was assessed
in two different ways: a “static” approach and a “dynamic”
approach. The static approach, being the simplest one, aimed
at estimating the performances of the classifier to separate VT
and SVT posterior to the arrhythmia. The dynamic validation
evaluated the performance in an online-like procedure, in which
a decision must be made continuously throughout the arrhythmia
episode.

A. Static Approach

In this approach, an arrhythmia episode is viewed as a single
point in the 4-D feature space: 〈θ〉 and C are estimated for each
beat, and the mean value over the whole arrhythmia episode is
computed. To minimize the effect of outliers on the mean, 10%
of the values that are furthest away from the mean are discarded,
before recomputing the mean. The two rhythmological features
〈R〉 and σR are also computed over the entire arrhythmia.

Model selection was performed on the Sorin CRM database,
as described in Section IV; it resulted in hyperparameter values
of σ = 2.9 and γ = 2 with S = 2.301 and AUC = 0.966.

The SVM classifier divided the feature space into two regions,
providing the equation E(X) = 0 of the boundary surface, where
X is the 4-D feature vector. The value of sgn(E(X)) indicates
the class of the arrhythmia described by vector X.

TABLE III
PERFORMANCE OF THE SVM CLASSIFIER

Table III summarizes the results over the test set on the Ann
Arbor Electrogram Libraries (AAEL) database. This “static”
approach was not validated on the ICD database because many
arrhythmias (SVTs) last for several hours and therefore cannot
be represented by a single point in feature space: in this case,
the “dynamic” approach is preferred.

B. Dynamic Approach

Unlike the “static” approach for which we need the entire ar-
rhythmia to make the decision, the “dynamic” assessment aimed
at giving an online decision for VT/SVT discrimination. During
an arrhythmia episode, each beat in turn was analyzed individu-
ally: the values of 〈θ〉 and C were computed for each beat from
its SPOT curve. The other two features (〈R〉 and σR ) were es-
timated on an eight-beat-long sliding window ending with the
current beat. Thus, each beat of the arrhythmia corresponds to
one point in the 4-D feature space. The final decision is made
according to the following rules.

1) If six out of eight consecutive beats are classified as VT, a
“majority index” was set to VT.

2) If six out of eight consecutive beats are classified as SVT,
the majority index was set to SVT.

3) Otherwise, the majority index was set to “no majority.”
4) If VT majority persists during 12 cycles, the arrhythmia

is classified as a life-threatening arrhythmia and a therapy
should be delivered.

The results of the dynamic approach are shown in Table III
over the two test sets. The sensitivity on the AAEL database is
not affected by the dynamic approach. However, we observe a
loss in specificity: in the dynamic approach, one decision is made
for each arrhythmia beat; therefore, for long duration SVT, the
persistence could be reached once and the arrhythmia episode
would be misclassified as a VT. In the static approach, such a
short temporary change in morphology would have a negligible
impact on the mean morphology of a long SVT episode. The
notable result is the fact that no VT from the present ICD data
would be misclassified. For the test set (AAEL + ICD data), we
obtained a mean sensitivity of 98.8% and a mean specificity of
91.3%.

VI. DISCUSSION

Two major issues need to be addressed for direct implemen-
tation into ICDs. First, we need to take into account the current
computational capabilities of ICDs, and second, the accuracy of
the algorithm relying on the comparison with the NSR template;
the latter has to be chosen properly.
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Fig. 4. Simplified boundary surfaces based on arrhythmia cardiac frequency.

A. Simplified Approach Implemented in the ICD

Power consumption is a prominent issue in ICDs and the com-
putational capabilities of the embedded processor are limited.
In its original form, the algorithm described earlier is too de-
manding for implementation in the ICD. Therefore, a simplified
version is proposed.

Furthermore, the computation of rhythmological features
(stability, frequency, and sudden onset) has been carefully op-
timized for present-day processors. Therefore, the short-term
future role of morphological algorithms should be to provide
additional discrimination criteria, not to replace these existing
features.

For these reasons, our efforts focused on simplifying the equa-
tion of the boundary surface and on decreasing the dimension-
ality of the feature space.

Plotting the 2-D level sets of E([〈θ〉 C 〈R〉 σR ]) = 0 for fixed
pairs of 〈R〉 and σR , we observed that the cardiac frequency
divided quite well the space in different zones: the higher the
cardiac frequency, the smallest the SVT zone. We decided to
cluster the arrhythmias into four groups: arrhythmias slower
than 150 BPM, between 150 and 200 BPM, between 200 and
250 BPM, and above 250 BPM. The class boundaries are almost
linear. Hence, they can be approximated by an affine function
that is used to separate the VTs from the SVTs. The four zones
are schematically represented in Fig. 4. In practice, arrhyth-
mias faster than 250 BPM would be treated irrespective of the
decision made by the classifier.

A second issue for the ICD onboard computation is the inverse
cosine function needed for the computation of 〈θ〉. It is less
expensive to use cos(θ(t)). From equation (1), it is given by

cos (θ(t)) =
b′1(t)b′2(t) + u′

1(t)u′
2(t)

N1(t)N2(t)
. (7)

The cosine function in [0, π] is a bijective function from [0,
π] to [1, −1]. In order to compute a significant mean, we use
T (t) = |cos (θ(t)) − 1|. Hence T(t) will be in [0, 2] and will vary
in the same manner as the angle: T(t) = 0 if θ(t) = 0. 〈T〉 spans
[0, 2] instead of [0, π]. A new SVM classifier has been trained

TABLE IV
PERFORMANCE OF THE SIMPLIFIED CLASSIFIER

on the Sorin CRM database, projected on the aforementioned
2-D space, and evaluated on the test databases (see Table IV).

The performance is essentially the same; a small loss in sen-
sitivity is observed, but a sizable improvement in specificity is
obtained for induced arrhythmias (AAEL). Conversely, the per-
formance of this new classifier on ICD data is almost identical
to that reported in Table III.

B. Template Updating

Template updating is a very important issue; EGM mor-
phology may vary due to antiarrhythmic drugs, lead matura-
tion, posture [7], disease progression [15], or ventricular cycle
length [16].

The posture invariance of our representation was investigated.
Recordings of NSR were performed for 24 patients in different
body positions (sitting, standing, supine, prone, and left/right
lateral decubitus). For 13 patients, the same recordings were
performed a few months later, at the next followup. Recordings
from a third followup are also available for two patients.

Based on the values of 〈θ〉 and C resulting from pairwise
comparisons of templates at different postures, no significant
changes in the SPOT features with respect to body position were
observed. Moreover, as expected, a periodic update of the NSR
template is necessary, especially during the first few months after
implantation, where NSR changes are more important. For the
moment, reestimation on a daily basis seems to be sufficient [17].

VII. CONCLUSION

The SPOT-based morphological algorithm has allowed us
to obtain very promising results on arrhythmia discrimination.
Data acquisition is still underway, and our classifier will be
tested on each new arrhythmia. A prospective clinical evaluation
of an embedded version of the algorithm is being planned in
order to confirm the advantages of this new analysis.
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