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Abstract
We describe a feature selection method that can be applied directly to models that are linear with
respect to their parameters, and indirectly to others. It is independent of the target machine. It is
closely related to classical statistical hypothesis tests, but it is more intuitive, hence more suitable
for use by engineers who are not statistics experts. Furthermore, some assumptions of classical
tests are relaxed. The method has been used successfully in a number of applications that are
briefly described.
Keywords: Model selection, variable selection, feature selection, kernel, classification, neural
networks, leave-one-out, Gram-Schmidt orthogonalization, statistical tests, information filtering

1. Introduction

The present paper addresses (i) the problem of variable selection for polynomials, and (ii) the prob-
lem of selecting explicitly computed kernels such as radial basis functions or wavelets. It is thus
essentially a filter method, although it can be used indirectly for selecting a learning machine, e.g.
for selecting the inputs and the hidden neurons of neural networks.

Assume that a database is available, including measurements of a set of candidate variables,
from which a set of features are computed (for linear machines, the variables are identical to the
features). The latter can be ranked in order of decreasing relevance to the output; only the most
relevant features, i.e., the top features of the list, should be selected; the question that we address
here is that of setting the boundary between the “top” and the “bottom” features, i.e., those which
should be selected and those which should be discarded, given the available experimental data.

The following intuitive method, whose close relation to statistical tests will be proved in Section
4, is discussed in the present paper: append to the set of candidate features a “probe” feature, which
is a random variable; if the amount of available data were infinite, this feature should be ranked
last, or should be ranked as low as other irrelevant features, if any. Since the amount of available
data is finite, the probe feature will appear somewhere in the ranked feature list; all features that
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are ranked below the probe should be discarded. Actually, since the probe is a random variable, its
rank in the list is a random variable too. Therefore, the decision of keeping or discarding a given
feature is based on the probability that this feature be ranked higher or lower than the probe. In the
spirit of classical hypothesis tests, the designer of the model will choose a risk of selecting a feature
although it is less relevant than a random one (or a risk of discarding a feature although it is more
relevant than a random one), and will base its decision on that risk.

The first part of the paper recalls the Gram-Schmidt orthogonalization procedure, whereby the
candidate features are ranked in order of decreasing relevance to the measured process output, or
concept. Section 3 describes the use of the probe feature, the computation of the probability dis-
tribution function of its rank in the list, and its use for feature selection. The relation between the
present procedure and Fisher’s test is subsequently derived. In Section 4, the extension to models
that are nonlinear with respect to their parameters is described. Section 5 discusses several applica-
tions of the method, both academic and industrial. Finally, we discuss the limitations of the method
and show that it is potentially useful in a larger framework.

2. Feature Ranking

A general, lucid discussion of the feature ranking and feature selection problems can be found in
the paper of Guyon et al. (2002). The present section is devoted to recalling briefly the use of
the Gram-Schmidt orthogonalization procedure for ranking the variables of a model that is linear
with respect to its parameters; it was first described by Chen et al. (1989); it was first used in the
machine learning context for RBF networks by Chen et al. (1991), for neural networks by Urbani
et al. (1993), and for wavelet networks by Oussar (1998), Oussar and Dreyfus (2000); variants of
the method were developed recently under the name of Matching Pursuit (see for instance Vincent
and Bengio, 2001).

We consider a model withQ candidate features; a data set containingN input-output pairs
(measurements of the output of the process to be modelled, and of the candidate features - or of the
candidate variables for linear models) is available. We denote byxi = [xi

1, xi
2, ...,xi

N]T the vector of
values of featurei, or of input i. We denote byyp theN-vector of the measured values of the output
of the process to be modelled. We consider the (N, Q) matrix X = [x1, x2, ...,xQ]. The model can
be written asy = Xθ, whereθ is the vector of the parameters of the model.

The first iteration of the procedure consists in finding the feature vector that best explains the
concept, i.e., which has the smallest angle with the process output vector in theN-dimensional space
of observations. To this end, the following quantities are computed

cos2
(

xk,yp
)

=

(
xk.yp

)2

∥∥∥xk
∥∥∥2∥∥∥yp

∥∥∥2 , k = 1 to Q (1)

and the vectorxk for which this quantity is largest is selected. In order to discard the part of the
concept that is explained by the first selected vector, all remaining candidate inputs, and the output
vector, are projected onto the null subspace (of dimensionN-1) of the selected feature. In that
subspace, the projected input vector that best explains the projected output is selected, and theQ-2
remaining feature vectors are projected onto the null subspace of the first two ranked vectors. The
procedure (termed “classical Gram-Schmidt” algorithm) terminates when allQ input vectors are
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ranked, or when a stopping criterion is met; the main point of the present paper is the description of
a new stopping criterion for that procedure.

In addition, the procedure computes the parameters of the model that are optimum in the least
squares sense, so that a model is built while the feature selection procedure is performed. It provides
valuable information:

• if the resulting linear-in-its-parameters model does not perform well, the validity of the result
of the selection procedure should be questioned; this point will be developed below;

• if the resulting linear-in-its-parameters model performs well, the selected features, or vari-
ables derived from the selected features, may be fed to a nonlinear-in-its-parameters model,
which may be more parsimonious, hence provide better generalization.

The performance of the linear-in-its-parameters model can be assessed efficiently by making
use of the analytic expression of the leave-one-out error computed by using the Sherman-Morrisson-
Woodbury theorem (Myers, 1990), which was extended to nonlinear-in-their-parameters models by
Monari (1999), Monari and Dreyfus (2000, 2002).

For improved numerical stability, it is recommended to use a slightly different procedure, termed
“modified Gram-Schmidt” (Bjoerck, 1967). Full algorithmic descriptions of both the classical
Gram-Schmidt and the modified Gram-Schmidt algorithms are available in the paper of Chen et al.
(1989).

Given a set ofQ candidate features, there are 2Q possible models. The above procedure allows
us to consider onlyQ models for selection: the model with the feature ranked first, the model with
the first two features, etc. The price paid for that complexity reduction is the fact that there is no
guarantee that the best model is among theQ models generated by the procedure. It can be shown
that the procedure is almost optimal (de Lagarde, 1983).

3. Feature Selection

The main point of the present paper is the presentation of a stopping criterion, which exempts the
model designer from ranking all parameters.

Assume that a “probe” feature, which is simply a realization of a random variable, is ranked,
just as all other candidate features, by the procedure described in the previous section. It would be
natural to discard all features that are ranked below the realization of the probe. However, the rank
of the probe feature is actually a random variable, whose cumulative distribution function can be
computed exactly as shown below. Once the cumulative distribution function is available, one has
to choose an acceptable value of the risk that a random variable might explain the concept more
efficiently than one of the selected features, i.e., the risk that a feature might be kept although, given
the available data, it might be less relevant than the probe.

Therefore, at each step of the Gram-Schmidt orthogonalization, the procedure is the following:

• after orthogonalization (by classical of modified Gram-Schmidt), pick the projected candidate
feature (not selected at previous steps) that has the smallest angle with the projected output,

• compute the value of the cumulative distribution function as described in the next section,

• if that value is smaller than the risk, keep the feature and perform the next step of Gram-
Schmidt orthogonalization
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• if that value is larger than the risk, discard the feature under consideration and terminate the
procedure.

The choice of the risk is problem-dependent: if data is sparse, the model should be as parsimo-
nious as possible, hence a low value of the risk should be chosen, in order to make sure that only
relevant inputs are present (but some features with low relevance might be missed); conversely, if
data is abundant, a higher risk may be acceptable (but some irrelevant features might be kept).

3.1 Computation of the Cumulative Distribution Function of the Rank of the Probe

We proceed to prove that the cumulative distribution function of the squared cosine of the angle
between a given vector and a random vector can be computed exactly, and that the cumulative
distribution function of the rank can be derived from that result.

The first step is the computation of the probability distribution function of the squared cosine
of the angleϕ between a fixed vector and a vector whose components are normally distributed, in a
space of dimensionν. It can be expressed as:

fν (x) =
Γ

(ν
2

)
Γ

(
1
2

)
Γ

(ν−1
2

) (1−x)
ν−3

2√
x

(2)

whereΓ(.) is the gamma function, withx = cos2ϕ, ν ≥ 2 and 0≤ x≤ 1. fν(x) is a beta-function
with a = 1/2 andb = (ν-1)/2 (see for instance Mood et al., 1974).

The cumulative distribution functionFν(cos2ϕ) is obtained by integration of relation (2). It can
be computed exactly as indicated in Appendix A. From the cumulative distribution function, the
probability that the angle between a probe and a fixed vector be smaller than a given angleϕ is
easily derived as

Pν(cos2ϕ) = 1−Fν(cos2ϕ) (3)

for ν ≥ 2.
Finally, the cumulative distribution function of the rank of a probe can be derived as follows.

At iterationn, n candidate features have been ranked, and a new feature is chosen among theQ−n
remaining ones. We denote byϕn the angle (in a space of dimensionν = N−n) between the selected
projected feature and the projected output, and byΠn the probability that the angle between a
realization of the probe and the projected output be smaller thanϕn: Πn = PN−n(cos2ϕn). We denote
by Gn−1 the probability that a realization of the probe be more relevant than one of then-1 candidate
features selected at then-1 previous steps of the Gram-Schmidt procedure. The probability that a
realization of the probe be less relevant than one of then-1 previous features is equal to 1 -Gn−1.
Therefore, the probability that a realization of the probe be more relevant than then-1 previous
features but less relevant than then-th feature is equal to

PN−n(cos2ϕn)(1−Gn−1)

Hence, the probability that a realization of the probe be more significant than one of then
features selected after iterationn is given by

Gn = Gn−1+PN−n(cos2ϕn)(1−Gn−1) (4)
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with G0 = 0.

As a first illustration, we consider (de Lagarde, 1983) a data set of 15 observations generated by
the following simulated process:

yp = Xθ+ ω (5)

whereyp andω are 15-dimensional vectors,θ is a 10-dimensional vector,X is a (15, 10) matrix.
The data generating process has actually 5 relevant features ({x1 to x5}) only, chosen from a normal
distribution: θi 6= 0 for i = 1 to 5,θi = 0 for i = 6 to 10. The components of vectorω are Gaussian
distributed with zero mean and variance 2 10−2. The input vectorsx j ( j = 1 to 10) are also chosen
from normal distributions.

Figure 1 shows the computed cumulative distribution function of the rank of a realization of the
probe. If a model with 5 features is selected, the probability that a random feature might explain
the output better than one of the 5 features chosen is lower than 10%. As expected, the five selected
features are the features with non-zero parameters of the data generating process.
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Figure 1: Computed cumulative distribution function of the rank of the probe feature, as a function
of the number of selected features. The 5 relevant inputs of the generating procedure are
selected if a risk of 10% is chosen.

3.2 Summary

In the present section, we summarize the feature selection procedure for a linear-in-its-parameters
model.

First, one should choose a riskr of selecting a feature that is less relevant than a random feature.

At stepn of the orthogonalization algorithm (n < Q):

• choose then-th candidate feature in the ranked list,

• compute cos2ϕn from relation (1),Fν(cos2ϕn) from Appendix A,PN−n(cos2ϕn) from rela-
tion (3),Gn from relation (4),

• if Gn > r, select then-th feature and proceed to stepn+1; otherwise, terminate the procedure.
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4. Relation to Fisher’s Test

Fisher’s test is a classical statistical (frequentist) approach to the selection of models that are linear
with respect to their parameters. It relies on the assumption that the model iscomplete, i.e., that the
regression function belongs to the family of functions within which the model is searched for. If one
(or more) input is irrelevant, the corresponding parameter(s) of the model should be equal to zero.
Therefore, the hypothesis that is tested is the fact that one or more parameters are equal to zero.

Fisher’s test compares a sub-model to the complete model. Other tests, such as the Likelihood
Ratio Test (Goodwin and Payne, 1977) and the Logarithm Determinant Ratio Test (Leontaritis and
Billings, 1987) compare models that are not thus related. It is proved that these tests are asymptoti-
cally equivalent to Fisher’s test (Soederstroem, 1977).

In principle, the complete model (withQ parameters) should be compared, using Fisher’s test,
to all 2Q sub-models. Using feature ranking with the Gram-Schmidt method as explained above, the
number of comparisons can be reduced toQ.

It is shown in Appendix B that the random variable that is used by Fisher’s test to discriminate
between the null hypothesis and the alternative one can be derived from the probe feature method.
The latter thus appears as an alternative to Fisher’s test, which (i) gives the model designer a clear
explanation as to why features should be discarded (given the available data) and (ii) does not rely
on the assumption that the complete model actually contains the regression.

5. Application to the Selection of Models that are Nonlinear with Respect to their
Parameters

Since this procedure applies only to models that are linear with respect to their parameters, it is not
directly applicable to the selection of the inputs of nonlinear-in-their-parameters models: multilayer
perceptrons, radial basis function networks, wavelet networks, etc. This drawback can be circum-
vented by noting that a variable which is irrelevant is irrelevant irrespective of the model, provided
that the latter can learn the task; therefore, the variables can be first selected with a model linear
with respect to its parameters (a polynomial model for instance), and subsequently used as inputs
to a neural net, thereby taking advantage of the parsimony of the latter. In the next section, we
describe an example where the relevant variables in a XOR classification problem are discovered
among many irrelevant variables, by selecting the inputs of a polynomial model of degree 2 that
solves the problem.

Therefore, the procedure is as follows:

• perform feature selection on a model that is linear with respect to its parameters, e.g. a poly-
nomial; check that the model gives reasonable results on the training set (if there is no point
in checking its generalization ability), or assess the generalization performance by computing
the leave-one-out error as mentioned above;

• if the linear-in-its-parameters model can learn the task, use the variables that appear in the
selected monomials as inputs to a nonlinear-in-its-parameters model;

• if the polynomial model cannot learn the task, increase the degree of the polynomial.

The main limitation of the procedure is the increase of the complexity of the polynomial with
the number of features to be ranked. It might become intractable if thousands of features were to be
ranked.
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Furthermore, the procedure can be applied to the estimation of the number of hidden neurons.
Consider a feedforward neural network, with a single layer of hidden neurons and a linear output
neuron, whose inputs are known. We address the problem of estimating the minimum number of
hidden neurons required to perform a nonlinear regression on the available data. The application of
the method described above is straightforward since the output of the hidden layer may be consid-
ered as the input of a linear model. The method can be applied either destructively, starting with
a large model and using the selection method to discard useless neurons, or constructively, adding
neurons until a hidden neuron is considered to be less relevant than a “probe” hidden neuron. In
the first case, one trains a large neural network, performs the above procedure by using as candidate
features the outputs of the hidden neurons, and discards the neurons that are less relevant than the
probe, with the chosen risk. The new architecture is retrained fully, and the procedure is iterated
until no irrelevant neuron is detected. In the second case, one starts from a minimal network and
increments the number of hidden neurons until an irrelevant neuron is detected.

In the same spirit, the procedure can be used for selecting RBF or wavelet networks: a library
of RBF’s (resp. wavelets), with fixed centers and widths (resp. translations and dilations) is created,
and the procedure is applied to select the most relevant kernels. The surviving kernels are subse-
quently trained (i.e., their centers or translations, and widths or dilations, are adjusted). If necessary,
the process can be iterated for further selection (Chen et al., 1989, Oussar and Dreyfus, 2000).

6. Numerical Illustrations and Applications

This section is devoted to the presentation of academic problems and of several applications in
which the method proved successful.

6.1 Academic Problems

Before proceeding to industrial and financial applications, we illustrate the method’s use on three
problems of academic interest.

6.1.1 VARIABLE SELECTION IN A SYNTHETIC CLASSIFICATION PROBLEM

In http://www.clopinet.com/isabelle/Projects/NIPS2001/#dataset, a database is generated as follows:
a linear discriminant function is chosen with random parameters in 2-dimensional space, random
examples are generated from that separator, and a given percentage of the outputs are flipped. Addi-
tional features are generated randomly, with given percentages of independent features, dependent
features, and repeated features. In our experiments, 100 such databases were generated. For each
database, 800 examples were generated for training and 400 for testing; 238 additional features
were generated. 10 % of the outputs were flipped randomly.

One “true” feature was among the top two ranked features 100 times, both “true” features were
selected 74 times; the selected features were used as inputs of linear separators with sigmoid nonlin-
earity, which were trained by minimizing the usual least squares cost function with the Levenberg-
Marquardt algorithm; for comparison, similar linear separators were trained with the “true” fea-
tures, whenever the latter were not selected. The mean misclassification rate on the training sets
was 10.4% (standard deviation 1.1%) with the selected features, whereas it was 10.1% (standard
deviation 0.7%) with the “true” features. At-test performed with 0.5% significance accepts the
hypothesis that the difference between the means is smaller than or equal to 0.125 %, which is the
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smallest misclassification rate that can be detected (1 error out of 800). Thus, the performances
of the true features and of the selected ones are not distinguishable with that level of significance,
thereby proving that the probe feature method selects either the “true” features, or features that are
essentially as good as the “true” ones for the problem under consideration, with the machine that
was implemented. The classification rates on the test sets are not significantly different from those
on the training sets (at-test with 5% significance supports the null hypothesis that the mean misclas-
sification rates are equal). For comparison, the misclassification rate when two features are chosen
randomly is about 45%; it is about 30% when one “true” feature and one randomly chosen feature
are used.

If a 1% risk is used,1 the first three features of the list are selected. The resulting misclassifica-
tion rates are not significantly different from the above results.

If 100 examples only are present in the training set, both “true” features are found in only 37
cases out of 100; however, the misclassification rates of classifiers trained with both true features
did not differ significantly by more than 1% from the misclassification rates of classifiers trained
with the two selected features.

6.1.2 VARIABLE SELECTION FOR THEXOR PROBLEM

In the same spirit, we build a database for classification with two classes of 50 examples each, drawn
from identical Gaussian distributions whose centers are in XOR positions in 2-dimensional space.
50 additional candidate variables are generated from a uniform distribution in [-2, +2]. If feature
selection is attempted with a linear model, the above procedure fails to give a satisfactory model, as
expected, so that the result of the selection is not valid; the relevant inputs are ranked quite low. If
variable selection is attempted with a quadratic model (leading to 1,326 different features, with 52
independent features including 2 relevant features), the random probe procedure selects the relevant
variables, and no other, with 1% risk. If the regression is performed with the selected variables, the
valid discriminant functionf = x1x2 is found, wherex1 andx2 are the relevant variables.

In the present example, there is no point in trying to find a better solution by feeding the selected
variablesx1andx2 to a nonlinear-in-its-parameters model: since the problem is 2-dimensional, a
neural network would not provide a more parsimonious solution.

6.1.3 SELECTION OF INPUTS AND HIDDEN NEURONS IN A NEURAL NETWORK

A training set of 2,000 examples, and a test set of 2,000 examples, are generated by a neural network
with 10 inputs, 5 hidden neurons with sigmoid activation function, and a linear output neuron. Its
weights are drawn from a gaussian distribution (0, 0.1). The inputs are drawn from a Gaussian dis-
tribution with zero mean, whose standard deviation is computed so as to convey a given variance to
the potential of the hidden neurons: the larger the variance of the potential, the more severe the non-
linearity. A zero-mean Gaussian noise is added to the output. Inputs are first selected as described
in Section 3, and hidden neurons are selected as described in Section 5. Training is performed with
the BFGS optimization algorithm, using gradient values computed by backpropagation. Table 1
shows the results obtained for 2 different standard deviations of the potential of the hidden neurons,
and 5 different noise variances ranging from 10−10 to 1. In all cases, the selection method, starting
from a candidate architecture with 20 candidate inputs and 10 hidden neurons, retrieves the correct

1. Experiments performed with the NeuroOne software package by Netral S.A.
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Standard Standard Number of Number of Root mean Root mean
deviation of deviation of inputs of the hidden square square test
the potential the noise final model neurons training error error

3 1. 10−10 10 5 9.6 10−11 1.1 10−10

3 1. 10−1 10 5 9.8 10−2 1.1 10−1

3 1 10 4 1.04 1.1
5 1. 10−10 10 5 9.7 10−11 1.1 10−10

5 1. 10−1 10 5 1.0 10−1 1.1 10−1

5 1 10 4 1.02 1.1

Table 1: Feature selection for the neural network problem, varying noise and number of hidden
units.

architecture, except for high noise levels where a lower complexity is appropriate for explaining the
measured output.

6.2 Industrial and Financial Applications

In this section, we describe briefly a number of real applications in which this method proved pow-
erful, and was readily understood by field experts who were not familiar with statistical methods
such as hypothesis testing.

The prediction of chemical properties of molecules (or QSAR – Quantitative Structure-Activity
Relations), viewed as an aid to drug discovery, is a notoriously difficult problem (see for instance
Hansch and Leo, 1995), because data is sparse, and because the candidate features are numerous.
Both neural networks (see for instance Bodor et al., 1994) and support vector machines (Breneman
et al., 2002) have been used extensively. The variable selection method presented here (together
with an efficient machine selection method) allowed the prediction of the partition coefficient of a
large number of molecules with previously unequalled accuracy on the same data sets (Duprat et al.,
1998).

Spot welding is the most widely used welding process in the car industry. Two steel sheets are
welded together by passing a current of a few kiloamperes between two electrodes pressed against
the metal surfaces, typically for a hundred milliseconds. The heating thus produced melts a roughly
cylindrical region of the metal sheets. After cooling, the diameter of the melted zone characterizes
the effectiveness of the process; therefore, the spot diameter is a crucial element in the safety of
a vehicle. At present, no fast, non-destructive method exists for measuring the spot diameter, so
that there is no way of assessing the quality of the weld immediately after welding. Modelling the
dynamics of the welding process from first principles is a difficult task, which cannot be performed
in real time. These considerations led to considering black-box modelling for designing a “vir-
tual sensor” of the spot diameter from electrical and mechanical measurements performed during
welding. The main concerns for the modelling task were the choice of the model inputs, and the
limited amount of examples available initially in the database. Variable selection (Monari, 1999)
was performed both as described in the present paper, and by more classical methods (stepwise
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backward regression and statistical tests based on performance comparisons), with identical results.
Our method is computationally less expensive than methods based of performance comparisons
since performance comparisons between models with different inputs require (i) training several
models with different initial values of the parameters (for nonlinear-in-the-parameters models), (ii)
selecting the model with the smallest leave-one-out or cross-validation score for each set of can-
didate inputs, (iii) performing the test. The variables selected by the random probe method with a
polynomial model of degree 3, were subsequently used as inputs to neural networks. The feature set
was validated by the process experts. The selection of the prediction machine itself was performed
on the basis on the computed leverages of the example, as described by Monari and Dreyfus (2002).

Still in the area of nondestructive testing, but in a completely different application, the feature
selection method described here was implemented for the classification of electromagnetic signa-
tures provided by eddy current sensors mounted a few millimeters above the rails, under carriages of
the Paris subway. The purpose of the application is the automatic detection of rail defects. Fourier
analysis yields 100 candidate features, while the number of examples was limited to 140, for a 4-
class problem. The 4-class problem was split into 2-class subproblems, and feature selection was
performed independently for each problem; the number of variables was thus reduced to less than
10 for each classifier (Oukhellou et al., 1998).

The present selection method was originally developed for two target applications in finance: the
financial analysis of companies for investment purposes, and the financial analysis of town budgets.
In the first case, experts suggested 45 financial ratios that were deemed relevant. The probe feature
method reduced the number of features to 7, leading to a model that was more efficient and more
clearly understandable than the previous ones; it has been in constant use for the last five years. In
the second case, the modelling was a 5-class classification problem, which was split into 10 pairwise
classification problems; variable selection was performed separately for each classifier. Using a 5%
risk, the largest pairwise classifier had 10 variables. The classifier was applied to all 36,000 French
towns for financial assessment. Both applications are described in detail by Stoppiglia (1997)

Finally, the present method proved particularly successful for information filtering. The purpose
of information filtering is to find information that is relevant to a given topic (defined in a short sen-
tence) in a wide corpus of texts. This can be formalized as a simple 2-class classification problem (a
document is either relevant or irrelevant), but the selection of the variables of the classifier (related
to the frequency of occurrence of words in the text to be classified) is difficult, since the vocabulary
is virtually infinite. Furthermore, since isolated words tend to be ambiguous, the context must be
considered, thereby making the structure of the classifier even more complex (see for instance Jing
and Tzoukermann, 1999). Therefore, feature selection is crucial. Detailed comparisons between
the present method, mutual information, statistical tests, and a selection method that is specific to
automatic language processing, can be found in the study of Stricker (2000). The method presented
here was used both to find the specific vocabulary of the topics and to find the relevant context of
each word of the specific vocabulary. Experiments performed on very large corpuses (Reuters and
Agence France-Presse corpuses, and other corpuses mentioned below) and large numbers of topics,
showed that the specific vocabulary of a topic can be reduced to 25 words on the average, with an
average of 3 context words per word of the specific vocabulary. Linear classifiers trained with reg-
ularization were found to be suitable after variable selection. Detailed descriptions of applications
of the present selection method to information filtering can be found in the papers of Stricker et al.
(1999), Wolinski et al. (2000).

1408



RANKING A RANDOM FEATURE FORVARIABLE AND FEATURE SELECTION

Task Number of Number of Number of
examples candidate features selected features

QSAR (regression) 321 74 8
Spot welding (regression) 310 15 4

Eddy current signals 100 140 < 10
(classification, 4 classes)

Financial analysis 250 45 7
(classification, 5 classes)

Information filtering 1000 (typical) 400 (typical) 25 (typical)
(classification, 2 classes)

Table 2: Summary of industrial and financial application results.

Table 2 summarizes results obtained in the above applications. For the last one, typical values
are given, because thousands of different classifiers were designed in order to deal with the databases
that were investigated.

7. Discussion and Conclusion

The probe feature method, as described in the present paper, contains two distinct ingredients: a
method for ranking features (classical or modified Gram-Schmidt orthogonalization) and a method
for selecting ranked features (the introduction of a probe feature among candidate features). Al-
though they are presented together here, they deserve separate discussions.

The ranking of features through orthogonalization for linear-in-their-parameters models is by
no means new. It has many interesting features. First, it is fast. Second, it takes into account the
mutual information between features: if two features are almost collinear in observation space, the
fact that one of them is selected will tend to drive the other to a much lower rank in the list. It
has the additional advantage of allowing an incremental construction of the model, so that training
can be terminated, without using all features, as soon as a satisfaction criterion is met; if the linear-
in-the-parameters machine thus trained is expected to be satisfactory, the generalization ability of
the machine, as estimated by a cross-validation or leave-one-out score, can be used as a satisfaction
criterion. Conversely, if the features are intended for subsequent use as inputs of a different machine,
it is only necessary to make sure that the linear-in-its-parameters machine can learn the task; in the
affirmative, the selected variables or features thus selected can be used as inputs to a different
machine that is not necessarily linear in its parameters. On the negative side, the method is based on
the minimization of a squared error loss, which is not always the most appropriate for classification,
even though it gives very good results, as shown above; its extension to other loss functions (such
as cross-entropy for classification) is an open problem.

The idea of appending a random probe feature to the set of candidate features and ranking
it among the others is central in the present paper. It is a powerful stopping criterion for Gram-
Schmidt orthogonalization or any of its variants, because the cumulative distribution function of
the rank of the probe can be computed analytically as proved above, so that one does not have to
actually rank realizations of the probe. However, as shown by Stoppiglia (1997), it can be used
in a different way: instead ofcomputingthe cumulative distribution function of the probe feature
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analytically, one canestimateit by generating a number of realizations of the probe feature, and
ranking them among the others by whatever ranking method is preferred, thereby generating a
corresponding number of realizations of the random rank of the probe, and allowing an estimation
of its cumulative distribution function. This makes the probe method potentially of more general
use, e.g. for selection methods that are based on weight elimination in the spirit of OBD (see for
instance Reed, 1993); since weights are related to individual examples in SVM’s, the method might
also be useful for example selection (Guyon et al., 2002). In addition, the assumption of normality
of the probe can be relaxed since it is necessary only for the analytical computation of the cumulative
distribution function.

The selection method that is described in the present paper is intuitive and easily understand-
able, even by engineers who are not familiar with hypothesis testing; this is an attractive feature
for researchers who endeavor to make machine learning techniques popular in industry. However,
the method is not yet another heuristics for model selection, since it is firmly based on statistics.
Furthermore, in contrast to Fisher’s test - to which the probe technique is closely related - the as-
sumption that the complete model actually contains the regression is not required. In contrast to
the approach described by Weston et al. (2001) the probe feature method does not aim directly at
improving the learning machine itself. It can only be conjectured that the withdrawal of irrelevant
variables or features will help the machine perform better. The method proved powerful, in sev-
eral contexts involving a large number of candidate features, and compared favorably, in terms of
computation times, with classical tests.

Appendix A. Computation of the Cumulative Distribution Function

The cumulative distribution function is given by:

Pν (x) =
∫ x

0

Γ
(ν

2

)
Γ

(
1
2

)
Γ

(ν−1
2

) (1−u)(ν−3)/2

√
u

du

with ν ≥ 2 andx = cos2θ.
If ν is even, then

Pν (x) =
2
π

[
sin−1√x+

√
x(1−x)Φν/2−2 (x)

]

whereΦν/2−2 is a polynomial of degreeν/2 – 2,

Φν/2−2(x) = 1+
ν/2−2

∑
k=1

2k k!
(2k+1)!!

(1−x)k for ν≥ 6

Φ0(x) = 1 for ν = 4,
Φ−1(x) = 0 for ν = 2.

If ν is odd, then

Pν (x) =
√

xΨ(ν−3)/2(x)

whereΨ(ν−3)/2 is a polynomial of degree (ν-3)/2,

Ψ(ν−3)/2 (x) = 1+
(ν−3)/2

∑
k=1

1
2k

(2k−1)!!
k!

(1−x)k for ν≥ 5

Ψ0(x) = 1 for ν = 3
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Appendix B. Relation of the Probe Feature Method to Fisher’s Test

Fisher’s test is a classical statistical (frequentist) approach to the selection of models that are linear
with respect to their parameters. It is assumed that the process can be described by equation:

yp = Xθ+ ω

whereω is Gaussian distributed (0,σ2). SinceE(ω) = 0, it is assumed that the regression function
belongs to the family of linear equations

y = Xθ (6)

within which the model is searched for (the model is said to becomplete).
If one (or more) input is irrelevant, the corresponding parameter of the model should be equal

to zero. Therefore, the hypothesis that is tested is the fact that one or more parameters are equal to
zero. Assume that it is desired to test the validity of the complete model against that of a sub-model
with q parameters equal to zero. The following quantities are defined

yQ = XθLS whereθLS is the parameter vector obtained by least-squares fitting of the complete
model (Q parameters) to the available data,

yQ−q = Xθq
LS whereθq

LS is the parameter vector obtained by least squares fitting of the complete
model, under the constraint thatq parameters out ofQare equal to zero

The considered hypotheses are
H0: theq parameters are equal to zero,
H1: theq parameters are not equal to zero.
If H0 (the null hypothesis) is true, the random variable

R=
N−Q−1

q

∥∥yp−yQ−q

∥∥2−∥∥yp−yQ

∥∥2

∥∥yp−yQ

∥∥2 =
N−Q−1

q

∥∥yQ−yQ−q

∥∥2

∥∥yp−yQ

∥∥2 (7)

has a Fisher-Snedecor distribution withq and (N−Q− 1) degrees of freedom. If, with a given
risk, the test leads to rejecting the null hypothesis, the sub-model withq parameters equal to zero is
rejected.

Fisher’s test compares a sub-model to the complete model. Other tests, such as the Likelihood
Ratio Test (Goodwin and Payne, 1977) and the Logarithm Determinant Ratio Test (Leontaritis and
Billings, 1987) compare models that are not thus related. It is proved in (Soederstroem, 1977) that
these tests are asymptotically equivalent to Fisher’s test.

In principle, the complete model (withQ parameters) should be compared, using Fisher’s test,
to all 2Q sub-models. Using feature ranking with the Gram-Schmidt method as explained above, the
number of comparisons can be reduced toQ.

Relation between the probe feature method and Fisher’s test
In the previous section, it was proved that, at iterationn of the procedure, cos2ϕn obeys a Beta
distribution witha = 1/2 andb = (N− n-1)/2 (relation 2 withν = N− n). If a random variableX
is distributed with a Beta law, thenba

X
1−X obeys a Fisher law with 2a and 2b degrees of freedom.

Therefore, the random variable

(N−n−1)
cos2ϕn

1−cos2 ϕn
=

N−n−1
tan2ϕn
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obeys a Fisher law with 1 andN−n-1 degrees of freedom.
At iterationn of the procedure, a model withn-1 parameters is available. Assume that we want

to perform Fisher’s test to compare then-parameter model obtained by adding the next parameter
in the ranked list to the model withn-1 parameters (assuming that the complete model contains the
regression). From relation (7), the random variable

R=
N−n−1

1

∥∥yn−1
p −yn−1

∥∥2−∥∥yn−1
p −yn

∥∥2

∥∥yn−1
p −yn−1

∥∥2 (8)

should be a Fisher variable with 1 andN− n-1 degrees of freedom, whereyn−1
p is the projection

of the output considered at iterationn, yn andyn−1 are the outputs of the models withn andn-1
variables respectively. At iterationn, all vectors of interest are in a space of dimensionN− n+1,
and the least-squares solution of the model withn-1 parameters lies in the null space of that space,
so thatyn−1 = 0. Moreover,yn is the projection ofyn−1

p onto the direction of the selected feature, so
that the angle between those vectors isϕn.

Therefore,

∥∥yn−1
p −yn

∥∥2
=

∥∥yn−1
p

∥∥2
sin2 ϕn

and

R=
N−n−1
tan2ϕn

Hence, the random variable that is used to discriminate between the null hypothesis and the al-
ternative one can be derived from the probe feature method. The latter thus appears as an alternative
to Fisher’s test, which (i) gives the model designer a clear explanation as to why features should be
discarded (given the available data) and (ii) does not rely on the assumption that the complete model
actually contains the regression.

References

A. Bjoerck. Solving linear least squares problems by gram-schmidt orthogonalization.Nordisk
Tidshrift for Informationsbehadlung, 7:1–21, 1967.

N. Bodor, M. J. Huang, and A. Harget. Neural network studies. 3. prediction of partition coefficients.
J. Mol. Struct. (Theochem.), 309:259–266, 1994.

C. Breneman, K. Bennett, M. Embrechts, S. Cramer, M. Song, and J. Bi. Descriptor generation,
selection and model building in quantitative structure-property analysis. In J. Crawse, editor,
Experimental Design for Combinatorial and High Throughput Materials Development. Wiley (to
be publised), 2002.

S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to
non-linear system identification.International Journal of Control, 50:1873–1896, 1989.

S. Chen, F. Cowan, and P. Grant. Orthogonal least squares learning algorithm for radial basis
function networks.IEEE Transactions on Neural Networks, 2:302–309, 1991.

1412



RANKING A RANDOM FEATURE FORVARIABLE AND FEATURE SELECTION
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